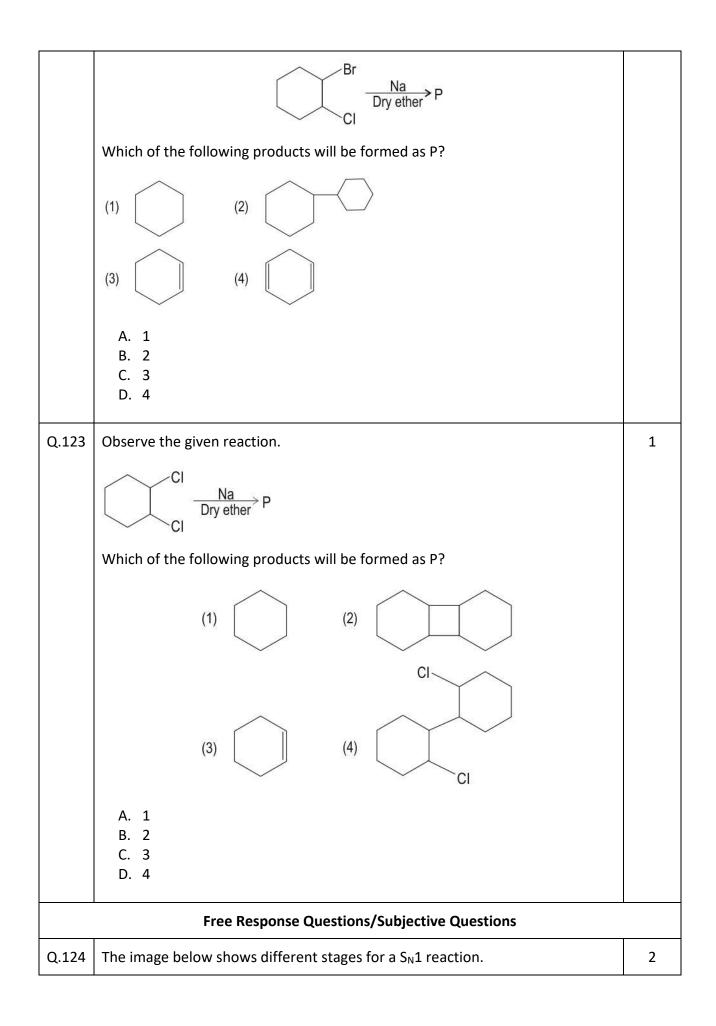
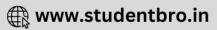
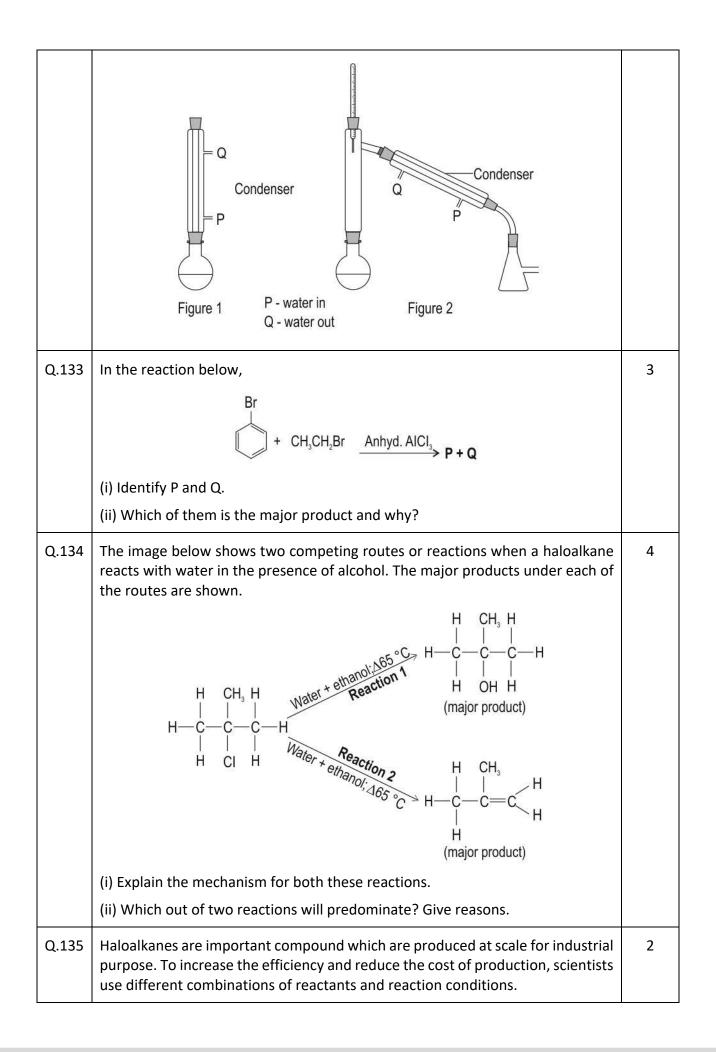

HALOALKANES AND HALOARENES





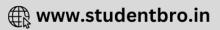
		Option	SN ₁ reaction	SN ₂ reaction	
		Р	tert-iodobutane	iodobutane	
		Q	tert-bromobutane	bromobutane	
		R	iodobutane	tert-iodobutane	
		S	bromobutane	tert-bromobutane	
2.117	A. I B. (C. I D. S The ta mecha	Q R S able below show	ws some of the fe	eatures of S_N1 and	S _N 2 reaction
	Rows	S _N 1		S _N 2	
	А	first order kine	tics	2nd order kinetics	
	В	reaction favour nucleophile	ed by any type of	reaction favoured by nucleophile	/ a non-bulky
	С	reaction favou leaving group	ured by a good	reaction not favoure leaving group	ed by a good
	D	stereochemistr	y: racemization	stereochemistry: inve	ersion
		nisms? A 3 C	nows an INCORRECT	F feature for at leas	t one of the
.118		of the following $H_2 - CH = CH_2 + F$		duct formed in the rea	action below?
		CH₃ - CH₂ - CH₂ - C			

Q.119	Which of the following molecules exhibits optical isomerism?	1
	 A. 3-iodopentane B. 2-iodo-2-methylpropane C. 1,3-diiodopropane D. 2-iodobutane 	
Q.120	The image below shows the ball and stick model of 4 different compounds.	1
	A C 1 - chlorobutane 2 - chlorobutane B 2 2 - aminoethanoic acid 2, 2 - dimethylpropane How many of the above compounds is/are optically active? A 1 B 2 A 1 B 2 A 1 B 2 A 1 B 2 A 1 B 2	
Q.121	Which of the following compounds will be hydrolysed most rapidly under similar reaction conditions?	1
	 A. 1-chloropropane B. 1-chlorobutane C. 2-chloro-2-methylpropane D. 2-chlorobutane 	
	As per the Fittig reaction, when 2 moles of chlorobenzene reacts with metals such as sodium in the presence of dry ether, it gives diphenyl.	
Q.122	Observe the given reaction.	1



	Which out c	of th	$R^2 - C^+$ R^3	$ \begin{array}{c} & & & & & & \\ Br & & & & (X) & & & R^2 - C \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ C \\ \hline \\ OH & & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & R \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & & R \\ & & & & \\ & & & \\ OH & & & & \\ \end{array} $ $ \begin{array}{c} & & & & & \\ & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & & \\ & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ & & & \\ \end{array} $ $ \begin{array}{c} & & & & \\ \end{array} $	ate on ¹ — OH		
Q.125	CH ₃ CH ₂ CH ₂ E The reaction is found to k follow, S _N 1 o	3r + n is o pe R or S	I ⁻ > CH ₃ CH carried out in ate = k[CH ₃ CI _N 2? Justify yo	a propanone solvent. The H ₂ CH ₂ Br] ^x [I ⁻] ^y Which mec	e rate law for t hanism does t	his reaction	4
Q.126				bout four different gaseo Atmospheric lifetime (approx. years)			3
	-	-					
	_	P	CCl₃F	45	24	-	
	_	Q	CCl ₂ F ₂ CClF ₂ CClF ₂	114	-29.8	-	
	_	R S		300	-46	-	
	SCF450,000-46(The atmospheric lifetime of a compound is an estimate of the average time it takes for that compound to leave the atmosphere.)(i) State one problem caused by compound Q in the atmosphere.(ii) Which two out of the four compounds are more suitable to be used as a refrigerant in refrigerators and why?						
Q.127	whether sub (p) heating (bstil CH₃	cution or elim CH ₂ CH ₂ Br wit	ombinations of reagents ination will predominate h aqueous NaOH aOH in ethanol			3
	(r) heating (CH₃)2CHBr with (CH₃)₃CO⁻K⁺			

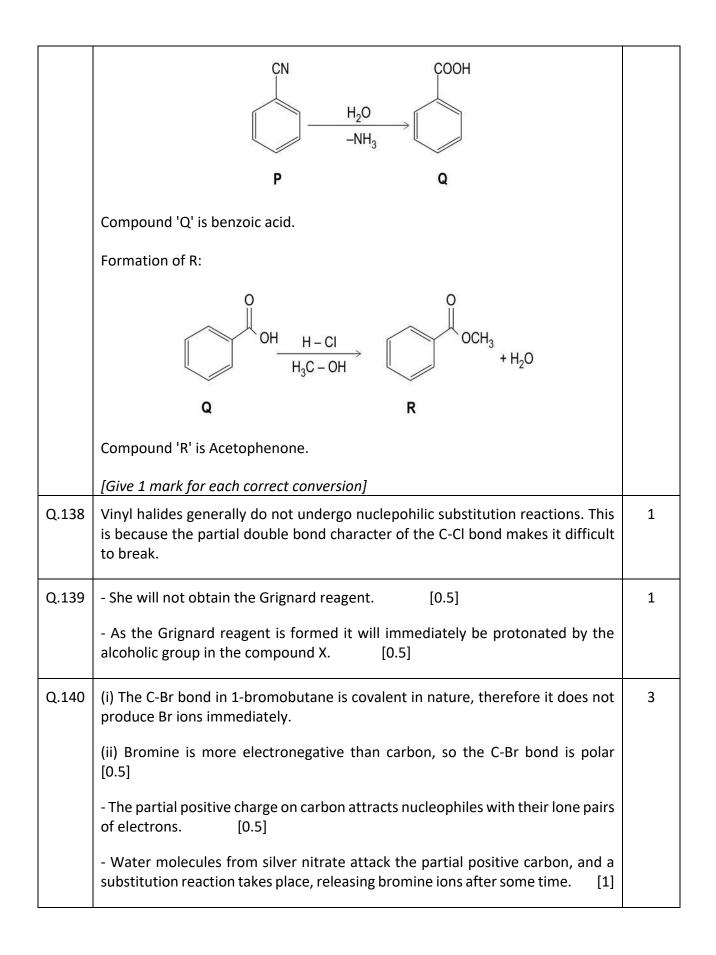
Q.128	Show the reaction mechanism for the reaction of tertiary butylbromide with ammonia.	2
Q.129	But-1-ene undergoes electrophilic addition reaction in the presence of HBr. (i) Write the name of all the products formed in the reaction. (ii) Which will be the major product formed and why?	4
Q.130	When 1-bromo-2methylpropane is heated with aqueous alkali, it gives 2- methylpropan-1-ol. Nanda suggested the following mechanism for this reaction. $CH_{3} - \begin{array}{c} CH_{3} H \\ CH_{3} - \begin{array}{c} C - \begin{array}{c} C \\ - \end{array} \\ H \end{array} \\ H \end{array} \\ H \end{array} \xrightarrow{C} CH_{3} - \begin{array}{c} CH_{3} H \\ - \begin{array}{c} C \\ - \end{array} \\ CH_{3} - \begin{array}{c} C \\ - \end{array} \\ H \end{array} \\ H \end{array} \\ H \end{array} \\ H H H \end{array} \\ + \begin{array}{c} Br^{-} \\ H \end{array} $	3
	Identify three mistakes in the mechanism shown by Nanda.	
Q.131	Do any of the possible structures of $C_5H_{11}Cl$ show stereoisomerism? If no, then explain why. If yes, draw the 3D diagram of the enantiomers.	2
Q.132	1-bromobutane is prepared from 1-butanol as per the reaction below.	3
	$C_4H_9OH + NaBr + H_2SO_4> C_4H_9Br + NaHSO_4 + H_2O$	
	Given below are the different stages in the preparation.	
	(1) heating the reactants for around 50 minutes in the apparatus shown in figure 1	
	(2) distilling the reaction mixture to obtain the product 1-bromobutane in the apparatus shown in figure 2	
	(3) weighing the distillate obtained	
	(a) Explain why the reactants are heated for 50 minutes in stage 1.	
	(b) What is the function of condensor in stage 1 and in stage 2? How does it help the reaction?	



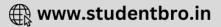
	You are given two different con shown below.	npounds that can be used to make C_2H_5Cl as			
	$\begin{array}{c} C_2H_6 & C_2\\ Ethane & Reaction \\ C_2H_4 & \\ Ethene & \\ \end{array}$ Which out of two reactants will y	on 2 HCI C ₂ H ₅ CI Chloroethane			
Q.136	Study the reaction below and an	swer the questions that follow:	3		
	$CH_3CI + NaI \rightarrow CH_3I + NaCI$				
	(i) How can we increase the rate				
	(ii) If methyl fluoride is to be reactants?	prepared by the above process, state the			
	(iii) Arrange methyl iodide, methyl fluoride and methyl chloride in the decreasing order of their dipole moment.				
Q.137	compound 'P' and CuBr in pres	e formula C_6H_5Br reacts with CuCN to form sence of pyridine at 475 K. Compound P on npound 'Q' which reacts with methyl alcohol ound 'R'.	3		
	Write the chemical reaction show	ving the above conversions.			
Q.138	Give a reason why vinyl halio substitution reactions.	des generally do not undergo nucleophilic	1		
Q.139	To prepare a Grignard reagent, U the compound shown below.	dita mixes magnesium metal in dry ether with	1		
	CH ₃ - CHOH - CH ₂ - CH ₂ Br				
	Will she obtain the Grignard reag	ent? Justify your answer.			
Q.140	The table below shows the effect of aqueous silver nitrate on bromine containing compounds at room temperature.				
	Sodium bromide	1 - bromobutane			
	pale yellow precipitate appears immediately	no reaction at first;faint precipitate appears after several minutes			

(i b) Why romobi			nitrate	produce	no	immediate	precipitate	with	1-
(i	i) Sugge	est a re	ason w	hy a pre	cipitate ap	pear	rs after sever	al minutes.		

Answer Key and Marking Scheme


Q.No	Answers	Marks
Q.115	D. Z	1
Q.116	A. P	1
Q.117	C. C	1
Q.118	B. CH ₃ - CH ₂ - CHBr - CH ₃	1
Q.119	D. 2-iodobutane	1
Q.120	A. 1	1
Q.121	C. 2-chloro-2-methylpropane	1
Q.122	C. 3	1
Q.123	C. 3	1
Q.124	(i) X will be slower [1]	2
	- X involves breaking of C-Br bond to form a carbocation [0.5]	
	- the carbocation is very unstable and reactive so the second step will be fast [0.5]	
Q.125	(i) S _N ² [1]	4
	- because in $S_N 2$ reaction the incoming nucleophile (I ⁻) interacts with the substrate (bromopropane) causing the C - Br bond to break and a new C - I bond to form. These two processes occur simultaneously in a single step without the formation of any intermediate. The rate of reaction is determined by the concentrations of both the reactants. [1]	
	(ii) Rate = $k[(CH_3)_3CBr]$ given by S_N1 [1]	
	- because $S_N 1$ is a two step mechanism in which there is an intermediate carbon cation formed. The rate of reaction is determined only by the concentration of bromopropane. [1]	
Q.126	(i) CCl_2F_2 decomposes under UV light to give free radical chlorine which reacts with ozone and destroys the ozone layer.	3
	(ii) Compounds Q and S; [1]	

	- It is very important that the refrigerant has a low boiling point, so that it turns into gas easily when it absorbs heat. [1]	
Q.127	 (p) Substitution; In polar solvent, substitution predominates for primary haloalkanes with OH ions [1] (b) Elimination; In a less polar solvent like alcohol, elimination predominates for tertiary haloalkanes with OH ions [1] (c) Elimination; elimination predominates due to steric effect as the base used 	3
	is bulky group [1]	
Q.128	The mechanism involves an initial ionisation of the halogenoalkane to form a carbocation: $CH_{3} - CH_{3} - $	2
	- This is followed by a very rapid attack by ammonia on the carbocation formed:	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Q.129	(i) 2-bromobutane and 1-bromobutane	4
	(ii)2-bromobutane [1]	
	- During the reaction, intermediate primary and secondary carbocations are formed. [0.5]	
	 Secondary carbocations are energetically more stable than primary carbocations due to positive inductive effect. [1] 	
	- The secondary carbocation will be formed in preference to the primary carbocation – hence, the major product will be 2-bromobutane not 1-bromobutane. [0.5]	
	(give marks if they explain using equations instead of text to explain)	
Q.130	1 mark each for the following:	3
	- C-Br dipole is reversed	


	- lone pair of electrons is missing from OH ⁻	
Q.131	- Yes;	2
	structure of enantiomers:	
	$\begin{array}{c c} CI & CI \\ CI \\ CI \\ CI \\ CH_2CH_2CH_3 \\ CH_2CH_2CH_2C \end{array}$	
Q.132	(a) This substitution reaction is very slow in nature and hence takes a long time.	3
	(accept any other valid answer)	
	(b) 1 mark each for the following:	
	- In stage 1, it condenses vapours and returns liquid to the flask thus allowing the reaction mixture to be heated at the boiling point without any loss of the reactant.	
	- In stage 2, it condenses vapours of the product that is distilling out.	
Q.133	(i)	3
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	(ii) Q is the major product [1]	
	- Due to the steric effect of the bromine group, substitution at the ortho position is hindered and preferably occurs at the para position.	
	(give marks if they mention less repulsion instead of steric)	
Q.134	(i) - For reaction 1, water can behave as a nucleophile and donate a lone pair (from oxygen) and attack (positive) carbon (originally attached to Cl) carbocation [1]	4
	 For reaction 2, water behave as a base and accepts a hydrogen ion/proton. This leads to elimination of HCl from the reactant. 	

	(ii) Reaction 2 [1]	
	Reasons:	
	- Tertiary carbocation formed during intermediate stage is stabilized by the electron density from three alkyl groups [0.5]	
	- To avoid bulky group effect, elimination reaction dominates over substitution reaction [0.5]	
Q.135	- C ₂ H ₄	2
	- By reaction 2, a single product is obtained.	
	- Whereas by reaction 1, a mixture of mono, di and tri-substituted products are formed. This reduces efficiency and increases cost of production.	
	(Accept any other correct answer)	
Q.136	(i) The rate of the reaction can be improved by precipitating NaCl in dry acetone.	3
	(ii) The reactants needed to prepare methyl fluoride is methyl chloride or methyl bromide and any metallic fluoride such as AgF, Hg_2F_2 , CoF_2 or SbF_3 .	
	(iii) The decreasing order of their dipole moment is:	
	methyl fluoride> methyl chloride > methyl iodide.	
	[Give 1 mark for each correct answer. Marks should be granted if the answer is written correctly in own words.]	
Q.137	The chemical reactions showing the conversions are:	3
	Formation of P:	
	Br CN	
	+ CuCN 475 K Pyridine + CuBr Cyanobenzene	
	Р	
	Compound 'P' is cyanobenzene.	
	Formation of Q:	

